
Project Proposal - Team 15
WifiLMR

October 22, 2018

Project Proposal - Team 15 0

Metadata 3
Synopsis 3
Description 4

Rationale 4
Use Cases 4
End Product 4

Milestones 5
First Semester 5
Second Semester 5

Budget 6
Interim Bill of Materials 6
Budget Estimate 7
Special Training 8
Required Delivery Dates 8

Gantt Chart & Work Plan 9
Preliminary Project Design 10

Overview 10
Software On Device 10

RadioApp 10
Overview 10
User Interface 10
Core 10

State 10
Service Discovery 10
Backend Interface 11
Calling 11

Hardware Abstraction Layer 11
Board Support 11

Software Off Device 12
RadioManager 12
Management Console 12

Digital Hardware 12
Overview 12

Audio 12
Battery Management 12

1

Power Management 13
Screen Connection and Management 13
User Controls 13

Mechanical Hardware 13
Design Constraints 13

Software 13
Hardware 14

System Components Diagram 15
Radio Hardware Diagram 16
Ethical and Intellectual Property Issues 17

Ethical Issues 17
Intellectual Property Issues 17

Software Licensing 17
Employment Agreements 17

Appendix: Change Log 18

2

Metadata
Team members:

● Armaan Amirani
● Zane Cersovsky
● Amrit Thapa
● Jack Weber
● John Ying

Synopsis

A cost-effective high fidelity two-way radio for campus-scale deployments leveraging
pre-existing WiFi infrastructure to avoid the need for licensed spectrum while improving indoor
performance.

3

Description

Rationale
Current solutions used for team communication on small to medium campuses have poor voice
quality and limited range or are too expensive to be deployed by organizations with limited
resources. By utilizing already-common wireless networks (WiFi) and Voice over Internet
Protocol, these problems are addressed without requiring costly high-power transceivers and
licensed spectrum allocations.

Use Cases
Our product will be useful in locations such as:

● Hospitals and other healthcare facilities
● Schools and higher education campuses
● Large corporate offices and campuses

Teams targeted by our product include:
● Maintenance personnel
● Nursing staff
● Information Technology technicians

End Product
The product will consist of a handheld end-user device that functions as a two-way radio. There
will also be a server component to relay traffic from user to user as well to provide a way to
administer a fleet of devices.

4

Milestones

First Semester
1. Core functionality proof of concept: ​​This entails having a working application that can

take voice from an input, send it to our backend, then have the voice played back on
another application. Estimated completion date: November 23

2. Digital hardware designed and ordered: ​​Know exactly how our radio will look and feel.
Have all designs and prefabs organized and materials ordered. Estimated completion
date: December 1

3. Management tool prototype:​​ Our project will have a console that a user can log into on
their local network. The console will allow the user to manage radios on the network.
Estimated completion date: December 14

Second Semester
1. Core functionality finalized:​​ Our core applications (RadioApp & RadioManager) will be

tested and working according to spec. Estimated completion date: February 14
2. Mechanical design completed:​​ The physical housing design will be complete and

ready to be integrated with the digital hardware. Estimated completion date: March 21
3. Product integrated:​​ The radio will be built and be running our application. The radio

should be roughly customer ready. Estimated completion date: April 14
4. Stretch goals (optional): ​​After the radio’s core requirements are met, stretch goals will

be attempted. Estimated completion date: End of semester

5

Budget

Interim Bill of Materials

Item Quantity Estimated Unit
Cost

Vendor(s) Vendor Part
Number

Software

.NET Core SDK 1 per team
member

$0.00 Microsoft

Visual Studio
Code

1 per team
member

$0.00 Microsoft

Buildroot 1 per unit $0.00 Buildroot Project

Mumble Server 1 per
deployment

$0.00 Mumble Project

Hardware

Raspberry Pi
Zero W

1 per unit $19.99 Microcenter 486575

Screen breakout 1 per dev unit $19.95 Adafruit 358

Microphone
breakout

1 per dev unit $6.95 Adafruit 3421

I2S Amplifier
breakout

1 per dev unit $5.95 Adafruit 3006

Screen (raw) 1 per non-dev
unit

$9.95 Adafruit 618

Speaker 1 per unit $3.95 Adafruit 3351

D-pad/joystick 1 per unit $1.95 Adafruit 504

Battery 1 per non-dev
unit

$5.95 Digikey 1568-1488-ND

Fuel gauge 1 per non-dev
unit

< $2 Digikey unknown

Battery charge 1 per non-dev < $2 Digikey unknown

6

controller unit

Microcontroller
(power
sequencing)

1 per unit $0.34 Digikey ATTINY9-TS8R
CT-ND

Channel knob 1 per unit $0.50 Adafruit 2047

Volume knob 1 per unit $0.50 Adafruit 2047

Channel
encoder

1 per unit $1.25 Digikey 987-1398-ND

Volume
potentiometer +
power switch

1 per unit < $2 Digikey unknown

Passives Some per unit < $5 Digikey unknown

Connectors
(internal)

Some per unit < $5 Digikey unknown

Connector
(charging)

1 per non-dev
unit

< $1 Digikey unknown

Printed Circuit
Board

1 per non-dev
unit

< $5 Macrofab

Fasteners Some per unit < $2 McMaster Carr unknown

ABS filament Some per unit < $3 unknown unknown

Budget Estimate
Fixed costs (software, tooling): $0.00
Cost per development unit: < $84.33
Cost per final unit: < $75.38
Desired number of development units: 2
Desired number of final units: 10
Estimated cost before shipping: < $842.58
Note: The development units will be scavenged for the Raspberry Pi and screen modules in
order to meet this budget.

7

Special Training
All of the tools selected for this project have excellent online documentation, so there will be no
need for any special training. Some of the libraries we will likely use as dependencies have
lacking documentation, but are obscure enough that there is no training available. Luckily, these
libraries are simple enough that this will not be too much of an issue. For hardware, we have
access to experienced mentors for both the digital and the mechanical design.

Required Delivery Dates
The software resources are all free and open source, so they can be acquired as soon as
needed. The hardware resources will be needed before the end of the semester so that work
can commence in integrating hardware and software, but the software architecture permits
software development to proceed without having possession of actual hardware. There will
likely be two phases of hardware acquisition, for development hardware and for final hardware.
This will allow the final design to be changed during the development stage. Some pieces of the
hardware that are known to be in both designs may be ordered in the first round to save
shipping costs and get the price break of ordering ten items.

8

Gantt Chart & Work Plan
First Semester

(RM = Radio Manager)

Second Semester

9

Preliminary Project Design

Overview
The package consists of the client, RadioApp, and a service backend, RadioManager. Voice
traffic originates on the device, is encoded by the RadioApp, then is sent over the local network
infrastructure to an instance of RadioManager. The RadioManager then distributes the voice
traffic to the units that are currently joined to the logical channel that the traffic originated in. The
RadioManager also handles configuration and authentication of the connected clients.

Software On Device

RadioApp

Overview
The RadioApp is the primary software component on the devices. It contains the user interface
and audio sending and receive functionality.

User Interface
The user interface module should provide three things: the appearance of the UI, input handling,
and the transitions between different UI states (screens). All of these items will be delegated to
a pre-built user interface library or framework.

Core
The Core module encapsulates the business logic of RadioApp.

State
The State submodule provides stateful, persistent stores of three types of information:
configuration, user preferences, and persistent UI state. Configuration is defined in this
context as values that can only be set at provisioning time or by configuring the radio via the
Management Console. User preferences are values such as backlight level that are set via a
local menu. Persistent UI state includes values that are set by the end user or by some radio

10

action that are not preferences but must survive reboots. The backing store for this data will
provide forward compatibility in the case of schema changes.

Service Discovery
The Service Discovery submodule is responsible for locating and identifying backend
instances. In normal operation, it must find the address of the backend that was configured in
the provisioning mode. In provisioning mode, it must discover and return the names of all
available backend instances present on the local network. This will accomplished via a
standard service discovery protocol, multicast DNS (mDNS).

Backend Interface
Management and authentication will require the use of some sort of communications channel
between RadioApp and RadioManager.

Calling
The Calling submodule receives and transmits audio from the backend. To control the scope
of this project, the sending and receiving of audio is delegated to an external piece of
software known as “Mumble”. Mumble is a voice chat solution with a client-server
architecture. As such, the Calling submodule is primarily concerned with the setup and
control of a Mumble client.

Hardware Abstraction Layer
Any hardware-specific device driver interactions will be handled in the HAL submodule. This is
what allows the RadioApp to run on normal Linux machines to ease development. This module
should be rather minimal and will consist mostly of configuration values (such as device path
names and boolean flags) that describe the platform that the RadioApp is running on. There will
be only two of these platforms: a dummy platform for development use and a platform
describing the actual radio hardware. There may be some classes that provide abstracted
access to hardware that is too custom to use standard drivers. The only likely use of this will be
the hardware channel knob if it is not mapped to a keyboard-like device.

The HAL also will provide an interaction layer to the WiFi hardware via communicating with
wpa_supplicant over DBus. This will be used to connect to the configured network, provision the
network connection via WiFi Protected Setup, and retrieve current connection status
information.

Board Support
Since we will be using a Raspberry Pi, all of the devices we will use have standard Linux
drivers. Thus, most of our kernel-level board support will consist of Device Tree definitions and
bootloader configuration. The current plan for the userland is to use a Buildroot-derived
userland. Buildroot will take care of assembling the userland and the runtime dependencies we

11

require. The fallback option if Buildroot does not work for us is to modify Raspbian, the official
GNU/Linux for the Raspberry Pi. This would be less ideal, but is guaranteed to work.

Software Off Device

RadioManager
The RadioManager is the backbone of our service. There will be one instance of the
RadioManager, and it will act as a server to host the clients, or RadioApps. Like RadioApp, it will
be built with .NET Core. The main purpose of the Radio Manager will be to segregate clients
into specific channels, and route voice data sent to it from the clients. This will happen through
an API defined in the RadioManager. This will be an abstraction of the Mumble API, that makes
finding channels and sending voice easy from the client’s view point.

Management Console
The Radio Manager will also have a front end that will allow a user to configure and manage the
clients. This front end is called the Management Console. It will consist of a web interface and
full authentication system. This authentication system will be used to verify administrators and
give them access to several tools. Some of these tools will include remotely configuring clients,
sending full one-to-all broadcasts and possibly sending text messages to devices. (This is a
stretch goal.)

Digital Hardware

Overview
To minimize the amount of effort needed to design the hardware, there is an emphasis on using
prebuilt modules or highly-integrated solutions wherever possible. As such, the digital design
revolves around a Raspberry Pi Zero W. It is common to attach daughter boards (HATs) to the
top of the Pi and this will be how our custom hardware will be implemented.

Audio
The only true audio hardware on the Raspberry Pi is an I²S bus exposed on the expansion
connector supporting two audio channels. This will be used in a full-duplex mono configuration
with one channel feeding an I²S enabled amplifier and the other channel sampling a I²S
microphone.

Battery Management
There are three main battery management components: the fuel gauge, the charge controller,
and the power hand-off circuit. The first two components are available as integrated circuits that
communicate over I²C. The last component may have to be built from scratch, but is relatively

12

simple as its only responsibility is to switch from battery to charger power when the charger is
connected.

Power Management
The Raspberry Pi has no way to fully shutdown on its own. To implement this, a very small
microcontroller connected to a small, always-on power supply will be used to run a simple state
machine. The inputs to this machine will be the state of the power switch and the TX serial line
on the Pi (which is pulled high while the processor is running). The outputs will be a signal to the
Pi to warn about an impending shutdown and a signal used to switch main power on and off.
The power switch will be debounced in hardware so that the microcontroller can spend most of
its time asleep.

Screen Connection and Management
This portion of the daughterboard will route the Serial Peripheral Interface lines from the Pi to
the screen module. In addition, one of the Pulse Width Modulation outputs on the Pi will be
routed to the backlight line to allow dimming of the screen.

User Controls
All user controls (navigation D-pad, knobs, PTT) will be routed through this part of the board.
The digital inputs (all except for the volume knob) will be pulled high by the Pi so that the only
components required will be resistors. The volume knob will be sampled by an analog-digital
convertor connected via I²C.

Mechanical Hardware
The outer casing will consist of two major pieces: the primary shell and a rear cover. The shell
will consist of the front face and the sides as one piece. The rear cover will attach via screws to
the front. Internally, most of the components will be on the daughterboard, which, along with the
Pi, will attach to the front cover. The exceptions to this are the PTT button and knobs, which are
affixed directly to the front cover.

Design Constraints

Software
● The device UI should be usable by non-technical users with little or no training
● The device UI should easy to read even in poor lighting conditions or by users with poor

eyesight
● The device should boot into a state that allows transmit and receive
● The main UI screen should display vital statuses (WiFi connection strength, RX/TX

status, battery life) as icons

13

● The UI should be navigable using only a 4-way directional pad plus a select button
● Network traffic should be less than 60kbit/s during RX/TX
● Audio quality should exceed normal PSTN telephone voice quality
● The software architecture must be flexible enough to allow RadioApp to run on a normal

desktop Linux machine

Hardware
● Hardware complexity should be converted into software complexity wherever possible to

take advantage of team resources
● All frequent user interactions (volume and channel changes, push-to-talk input) should

have hardware inputs
● Battery life should be long enough to last an entire 8-hour shift on a single charge
● The physical casing should be roughly 6 inches tall. The other dimensions should be

adjusted to maximize ergonomics
● The power switch should trigger a graceful shutdown when switched off
● Minimize cost and manufacturing complexity

14

System Components Diagram

15

Radio Hardware Diagram

Initial Status Screen UI Mock

16

Ethical and Intellectual Property Issues

Ethical Issues
Current ethical issues remain small with our product. One possible area of issue is security of
the communication network as it is a communication device. If an outside person were to listen
in on the channel that is supposed to be secure, that would provide a responsibility for us to
make sure that does not happen. Our product, however, is not labelled as being capable of
secure communications.

This product also makes no guarantee of the reliability required to be used in mission critical
situations. It could be possible to extend this product into both of those areas, but it would
require more design and a rigorous quality assurance process that we do not have the
resources for.

Intellectual Property Issues

Software Licensing
We presently have no plans to commercialize our project. As such, we have decided to keep
our design open source so that it may benefit others. The software components, where
possible, are MIT licensed to allow commercial reuse. The hardware components will be
licensed under an equally permissive license wherever possible.

We are making an effort to use primarily MIT and compatible dependencies where possible.
Several parts of the project will be forced to use dependencies with GPL. These will be kept
separate from our software so contamination is avoided. Certain portions of our work product
will have to tightly integrate with GPL dependencies and will be licensed with appropriate GPL
derivative since the redistribution clauses of the GPL would render any MIT-licensed code
effectively GPL in any other case.

Employment Agreements
Several of the members of our group are presently employed in software engineering positions.
As is common in the software engineering field, they are bound by intellectual property
ownership clauses in their employment agreements. None of these employers are interested in
enforcing these clauses in the case of this project. This is due to the project being too far from
their respective target markets.

17

Appendix: Change Log
Our team had temporarily switched to a different project idea around the time that the Initial
Project Proposal came due. As such, that document described this other idea (“MetaRank”, a
HackerRank-like service that generated pseudo-random toy programming languages to test the
adaptability of candidates for software engineering positions). Every section shared by this
document and the initial version has changed except for the team information.

18

